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I. INFLUENCE OF ELASTIC MODUI ON MECHANICAL PROPERTY AND
ATOMIC MOBILITY CHARACTERISTICS OF CRYSTALLINE SOLIDS AT ELEVATED
TEMPERATURE (0. D. Sherby)

Very little is yet known about the influence of temperature on the

elastic properties of single and polycrystalline solids, especially above

one-half the absolute melting temperature. Much more experimental and

theoretical work is necessary. At the A.R.L. annual contractors' meet-

ing in February, 1963 we attempted to show, in the short time allotted us,

some of the important contributions of elastic properties to other elevated

temperature properties of crystalline solids. This is reviewed briefly in

the following sections.

(1) Plastic properties of polvcrvstalline solids. Research on the

creep of polycrystalline metals(1) has revealed three important factors

that contribute to the strength of such solids: (1) diffusion rate of

atoms, (2) grain size and (3) elastic modulus of the material. It has

been shown that the strength of a polycrystalline metal above half the

absolute temperature can be predicted by the relation

!

0- 1.7 • 10-6 e 5 E LI/l D"/5 L2 / 5  (I

where o- is the ultimate tensile strength in psi (or flow stress since

strain hardening is negligible at elevated temperature), D is the diffu-

sion coefficient (in cm 2/sec), L is the grain diameter (in cm), ý is the
-l)

strain rate (in secs. ), E is the average elastic modulus (in psi) and

the constant has units of cm- 4 5 . Thus, if one were to compare all metals

of comparable grain size and at a temperature where the diffusion coeffi-

cient was the same, the strength (at a given strain rate) will be propor-

tional to the average elastic modulus. This is shown to be the case in
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Fig. 1 for a number of metals.

The importance of elastic 'modulus also comes into play in the cal-

culation of activation energies for creep. For example, it has been shown

that the activation energy for creep is normally higher than that for self-

(2-4)diffusion at temperatures above half the absolute melting temperature

This is because the modulus of a material partly controls the creep rate,

probably through its influence on the height a dislocation must climb be-

(5)fore it surmounts a barrier(. Since E changes with temperature it will

influence the creep rate above and beyond the influence of the change of

the diffusion coefficient with temperature. If the activation energy for

creep is determined at constant a- rather than at constant 0 (the usual
E

way) an activation energy for creep is then obtained equal to that for self-

diffusion. Examples of this consideration on determination of activation

energies for creep is given in Section IV of this progress report.

(2) Volume self-diffusion in crystalline metals. Zener has derived

a theoretical expression for Do, the pre-exponential term in Lhe diffusion

(6)
coefficient . In the derived expression the temperature coefficient of

the elastic modulus is introduced as a factor that controls the entropy

of activation of the diffusion process. The expression for D as given byo

Zener is

D a2s/e (2)

where a is a coefficient related to the geometry of atomic jumps, a is the

jump distance, v is the frequency of vibration of atoms, AS is the entropy

of activation and R is the gas constant. The entropy of activation is given

by
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ns -AP Q(3)
m

where A is a numerical coefficient about equal to one, Q is the activa-

tion energy for self-diffusion, T is the absolute melting temperature

and P is the temperature coefficient of the elastic modulus given by

. d(E/E )

P - .(T/T • (4)
m

In this expression E is the modulus at temperature T and E is the modulus
0

at absolute zero.

Since the constants, V , a, V and _Q are about the same for most
Tm

metals* it can be readily seen that D should be proportional to p . That

Zener might be essentially right in his theoretical analysis is evidenced

by the fact that P is about the same for many metals and similarly D iso

* t is related to the geometry of atomic jumps and Zener has indicated that
this should be unity for the case of an atom-vacancy exchange process. a,
the jump distant, would be approximately equal to the lattice parameter,

o
about 2 A for most metals. V , the frequency of atomic vibration, is gener-

113
ally taken as 10 per second; a vigorous approach to the determination of

(7)
this characteristic of atoms , however, suggests that it is proportional

to the square root of A where E is the elastic modulus, a is the latticem
spacing and m is the atomic mass. The data in Fig. 5 on experimental D val-0

ues for liquid and solid self-diffusion, in fact, do reveal a trend between

D and the atomic mass suggesting that the relation V - L J ay be essen-
0 2 m

tially correct. The importance of the modulus term E in the above equality

has not been evaluated; in Eyring's expression(8) for V, the atomic mass

is introduced in a similar way but a modulus term is absent. ý- is aboutT
m

constant for a given crystal structure since it has been shown (9) that
Q - R Tm (k + V) where k is a crystal structure factor (14 for BCC metals,

16 for HCP metals, 17 for FCC metals and 21 for diamond structure) and V is
the valence. Since k is much greater than V, ..=-R k

0 T 0
m
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2
about the same for these same metals (Dot-l cm per second). In the case

0

of zirconium where anomalously high diffusion rates are obtained the be-

havior can be associated with an exceptionally large value of p. This

peculiar diffusion behavior of beta zirconium (which is body-centered-

cubic) is compared with other pure metals in Fig. 2 where the diffusion

coefficient is plotted as a function of the reciprocal homologous tempera-
T

ture -- . The elastic constants for a number of metals are plotted in
T

Fig. 3. As can be seen, the value of p for zirconium (only alpha zircon-

ium is plotted since data for beta zirconium is not yet available) devi-

ates considerably from the other metals. If the activation energy for

self-diffusion of beta zirconium is assumed to be about normal then the

diffusion data (Fig. 2) for this material can be interpreted as follows:

the D is unusually high for this metal and furthermore D varies with0 o

temperature, decreasing with increasing temperature. This suggested varia-

tion is illustrated in Fig. 4. High values of D are in harmony with the0

high value of p for zirconium.

Another example of the possible influence of elastic properties on

solid state diffusion can be given. It has been shown that ferromagnetism

influences the self-diffusion rate of iron(10, 11) and that when the Curie

temperature is approached the atomic mobility is increased more rapidly than

a linear increase of log D versus (lI/T) predicts. A similar change in the

elastic properties of iron has also been observed( 3 ' 4); that is, the modu-

lus drops much more rapidly than linearly with increase in temperature in

the vicinity of the Curie temperature. Borg( 1 2 ) has successfully related the

changes in self-diffusivity with temperature as ferromagnetism is lost with
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the Zener relation on the assumption that D is increased with increase in0

the coefficient p of equation (3).

As encouraging as these results may be in support of Zener's theory

there are two difficulties which must be overcome before a clearer under-

standing of the influence of elastic constants on atomic mobility is evolved.

These are discussed in the following sections.

Absolute values of D in Zener expression. A major discrepancy in

the correlation between Zener's theory of D and experiment is observed when0

the absolute values of D as obtained from equation (2) are compared with

(13)
experimental values . In fact, as can be seen in Fig. 5, the theoretical

values are generally about 102 larger than the actual values (with consider-

able scatter). This discrepancy is true both for solid state diffusion as

well as for liquid state diffusion. These results suggest that an import-

ant contributing factor to D may have been overlooked by Zener.o

Method of obtainina A. Zener obtained values by determining the

slopes of the E/E versus T/Tm curves at low temperatures, below 0.5 Tm

lie purposely avoided using high temperature modulus information because

these data typically show curved relations rather than linear ones. Zener

attributed such curvatures to the contribution of grain boundary relaxation

to the observed modulus. It is undoubtedly true that some of the reported

elevated temperature data on modulus of pure metals is complicated by such

boundary relaxation. In many cases, however, a curvature is observed even

in the case of single crystals. An example of such behavior is given for

zinc single crystals in Fig. 6; the modulus curve for polycrystalline zinc

is shown on the same graph. As can be readily seen the single crystal and

polycrystal data all reveal a similar temperature dependence. Work by
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Brown and Armstrong(17) on the elastic properties of single crystals of W

and Mo revealed similar curves.

Obviously if such curvatures in the elastic properties above 0.5 Tm

reflect the true behavior of the material with respect to the bonding char-

acteristics of the crystal lattice, it is this type of data that is needed

to correlate with the corresponding diffusion data (since almost all dif-

fusion studies have been performed much above 0.5 T m). Such analyses have

not been attempted to date simply because very few determinations of elastic

constants of single crystals have been performed above 0.5 Tm; on the other

(9)hand, reliable diffusion data are now available for 23 different metals

If P in Zener's entropy expression (equation 3) changes with tempera-

ture it might be expected that logarithm D should be a non-linear function

of l/T. Curvature in such plots has already been illustrated for zirconium

in Fig. 2. That other diffusion data might exhibit some curvature has been

(14, 19)
suggested by several investigators

II. INFLUENCE OF GRAIN BOUNDARY RELAXATION ON THE ELASTIC PROPERTIES

OF POLYCRYSTALLINE AGGREGATES (A. J. Ardell)

The mathematical treatment in the previous progress reports has been

developed for the purpose of providing greater insight into the atomic mech-

anism of grain boundary relaxation; this, in turn, would increase our know-

ledge of the nature of internal boundaries in metals. It is indeed a pity

that the experimental phenomenon of anelasticity, which has proved so fruit-

ful for investigating interactions between substitutional and interstitial

foreign atoms with the metallic lattice, has led to nothing conclusive about

grain boundaries. This is partly because grain boundary relaxation is an

inhomogeneous process in the sense that it occurs in inhomogeneous regions
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throughout a given specimen, and partly because existing data have been mis-

interpreted by failure to account for the distribution of relaxation times

involved, despite the fact that the existence of this distribution has long

been recognized( 2 0 ' 21). These two aspects will be discussed in more detail

shortly. Suffice it to say now that the consequences of the inhomogeneous

nature of grain boundary relaxation impose certain limitations on the mathe-

matics.

In the sixth progress report(22) it was stated that the distribution

of relaxation times is more likely due to a distribution of facet sizes than

grain diameters. It was also speculated that the former distribution would

be broader than the latter. To investigate this possibility a photomicro-

graph of annealed pure aluminum was taken and enlarged to facilitate facet

size measurement. The resulting histogram with fitted curve is shown in Fig.

7. The fitted curve is replotted on a logarithmic scale in Fig. 8 (in both

figures the facet size scale is arbitrary). As is evident from Fig. 8 the

distribution in facet length L is not lognormal, though for comparison it

is possible to extract a half-width, the value of which is 0.996. This is

roughly 2-1/2 times the lognormal P's for grain diameters of Al and Sn re-

ported by Feltham(2 3 ). The half-width value of 0.996 is still far too small

to account for the observed breadth of internal friction due to grain bound-

ary relaxation in aluminum, which requires a P of 4.28(22). According to

McLean(24) copper and silver require comparable p&s, so that we may tenta-

tively regard half-width values of 3-1/2 to 4-1/2 as typical. An assumed

proportionality between y° and L2 offers "o significant improvement in fit.

Lack of lognormality in the facet size distribution can be interpreted

as proof that the facet size, not the grain size, is the important parameter
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in the quantity (VLe H/RT). Letting D represent grain size, a lognormal

distribution of grain size means a symmetrical distribution in ln(D). More

specifically, if D is the mean grain size, the distribution of x - ln(D/D)

is symmetrical about x - 0 if the distribution of x is lognormal. Similarly,

the distribution of y a ln(L/L) is symnetrical about y - 0 if the distribu-

tion of y is lognormal. If we assume TO proportional to L, it is easy to

show that

y - -(I/R)( - . (5)

Therefore, if the distribution of y is lognormal, the distribution of 5 is

symmetrical about - 7' and the resulting curve of J2 /Ju is symmetrical

about its maximum. This is illustrated in Fig. 1 of the sixth progress re-

(22)port . It can also be seen from this figure that the experimental curve

is not symmetrical about its maximum, but is skewed to high values of l/T,

or equivalently, to high values ofif. On the other hand, Fig. 8 of this

report reveals that f(y) is skewed to the left which, through equation (6)

predicts that g (') should be skewed to the right. Since grain size dis-

tributions are lognormal(2 3 ) they should yield symmetrical curves of J2 /Ju.

Since this is not the case we may conclude that the facet size distribution

is the governing one as would be expected.

It remains to investigate possible reasons for the lack of fit be-

tween experimental and theoretical curves. One may immediately inquire

into the effectof grain boundary misorientation. Low-angle boundaries which

can be successfully described by dislocation models are difficult to shear,

whereas high-angle boundaries will shear in a viscous manner at low stresses.

We may anticipate that the activation energy associated with viscous-like
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motion of high-angle boundaries depends on the structure of the boundary,

although it is difficult to envisage how the structure changes with nis-

orientation angle. One might expect that the activation energy is a sen-

sitive function of misorientation angle in the region of transition between

low-angle and high-angle, but that it is relatively insensitive in the high-

angle region. This, however, is contradicted by the theoretical calcula-

tions of Li (25). By assuming that shear motion of high-angle tilt bound-

aries occurs by the mechanism of grain-boundary jog propagation, he derives

an expression for the activation energy of grain boundary shearing as a

function of misorientation angle which indicates a rapid variation of acti-

vation energy with angle. The indications are, however, that Li's equation

is more applicable to shearing behavior at stress levels considerably higher

than those normally encountered in grain boundary relaxation experiments.

It is known that at stress levels sufficient for plastic deformation in a

material, grain boundaries no longer deform in a viscous manner( 2 6 ). In

any event, a distribution in activation energy will result in a change in

the width of grain boundary relaxation curves with temperature (or fre-

quency), and although the temperature ranges in the literature are small,

the accuracy with which activation energies are determined indicate no large

changes in peak width. From this we may conclude tentatively that the con-

tribution of a distribution of activation energies is small.

Let us now examine the consequences of the heterogeneous nature of

grain boundary relaxation. In any given specimen the grain boundaries will

experience varying initial shear stress depending upon the angle between the

boundary normal and the applied stress. Consider the idealized case of

cubical grains of the same size in a snectmen subject to uniform tension.
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Two important points are illustrated in Figs. 9a and 9b.

V i

TK

I .L-Y

rigure 9a Figure 9b

In Fig. 9a there is no shear stress acting in any of the boundaries so that

the material is unrelaxed at all times, i. e., it behaves as if it had an

infinite relaxation time. Thus we see that even though there is an intrin-

sic single relaxation time associated with the specimen, the stress state

is such that no relaxation can occur. Reference to Fig. 9b reveals that

unless a acts along a cube diagonal, the initial shear stress differs for

boundaries with normals in the x, y, and z directions. In this way it is

possible for a specimen with a single intrinsic relaxation time to behave

as if it had as many as three relaxation times.

The implication of this example is an important one; it is possible

that the extreme breadth of grain boundary relaxation curves is due largely

to the way the applied stress is initially distributed on boundaries, thus

indicating that an exact fit between theory and experiment would yield more
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information about the stress distribution on the grain boundaries than the

nature and properties of the boundaries themselves. It is suggested, there-

fore, that before any future attempts are made to fit experimental grain

boundary relaxation curves, experiments be carried out with the following

improvements:

1. Data should be obtained well into the region where the charac-

teristic background internal friction is dominant so that the internal fric-

tion due to grain boundary relaxation can be separated unambiguously from

the background. The average relaxation time may then be identified with

the maximum in the curve of ('-ixM /M).U

2. Measurement of the average facet size should be made so that the

dependence of Q- and M/Mu on this parameter can be established.

3. Experiments should be conducted over wide enough frequency ranges

to determine whether there is a significant contribution due to an activa-

tion energy distribution. Such a contribution will manifest itself in a

change of the width of Q-I curves at the different frequencies.

4. Care should be taken to insure that preferred orientation is

absent in test specimens so that there is a preponderance of high-angle

boundaries.

It is planned to write a paper summarizing the various factors in-

fluencing grain boundary relaxation discussed during this program.
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III. INFLUENCE OF SOLID SOLUTION ALLOYING ON THE ELEVATED
TE4PERATURE ELASTIC AND PLASTIC PROPERTIES OF POLYCRYSTALLINE SOLIDS

(H. Ledbetter)

It is proposed to investigate the high temperature mechanical

behavior of various scld solution alloys in the Cu-Zn system. Although

the creep characteristics of pure metals are fairly well understood (see

reference (1) for example), only preliminary studies have been made toward

an understanding of creep in solid solutions. Important work in this

(27-30) (31)area has been done by Weertman as well as by Sellars and Quarrell

Weertman(27, 28) has given the most detailed and quantitative mech-

anistic theories of creep, both for pure metals and for solid solutions.

At intermediate stresses his results for the steady state creep rate show

a power law type stress dependence and an exponential temperature depend-

ence of the form

SK ýn exp (-Q/RT) (6)kT

where n is 4.5, 3.0, or 2.5 depending on whether the rate controlling pro-

cess is dislocation climb, solute drag on moving dislocations (micro-creep),

or motion over Peierls hills respectively. For the first case the creep

rate can be written more explicitly as

4.5
V- K' DO' (7)M0.5 E3.5

which shows the strong dependence of the steady-state creep rate on the

diffusivity D, the elastic modulus E, and the density of active F-9

sources M.

An earlier theory of Weertman's(5), which required the production
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of immobile dislocations , gave the result

-i•7' DO4 LLM (8)
E

3

where L and L' are interpreted as the grain size and sub-grain size.

When microcreep controls, Weertman(28) has given for low stresses

a general expression for the creep rate due to viscous dislocation glide

-0.35 0 (9)
AE

where A depends upon the particular rate controlling mechanism (Cottrell

locking, Suzuki locking or Fisher locking) and is a function of the dif-

fusivity.

Comparison of Weertman's theories with experiment has been en-

couraging indeed, though only qualitative. Equation (7) should apply to

pure metals while equation (9) should apply to solid solutions. Alloying

should reduce the stress exponent from 4.5 to 3.0. Ni( 2 9 ) and Al( 3 1 ) both

have shown a 4.6 stress exponent at low stresses, giving close agreement

with the theory. Further, Weertman's theoretical calculations are in

reasonable agreement with the semi-empirical equation given by Sherby(I)

for the steady state creep rate in pure metals

6 1029 L2 D()Z (10)

which again emphasizes the importance of the grain diameter L, the dif-

fusivity D, and the elastic modulus E in high temperature creep.

For alloys there is also good agreement between theory and experi-

ment. Various alloys of In and Pb have been shown by Weertman(30) to bave
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the predicted reduction in the stress exponent upon alloying. Aluminum

(31)
alloys show a similar effect . But in all of these cases, both dif-

fusion and elastic constant data were not available so that a quantita-

tive comparison between experiment and theory was not possible.

Sellars and Quarrell( 3 1 ) have investigated the high-temperature

mechanical behavior of alloys in the Au-Ni system (which exhibits con-

tinuous solid solubility). Using constant stress compression tests they

found a power law of 5.6 for the pure metals and a power law of 3.0 to

3.5 for the alloys. A strong dependence upon diffusivity was also demon-

strated. However, lack of elastic constant data prevented a precise

comparison with Weertman's theory.

To date, no detailed investigation of creep in solid solutions has

been made carefully considering the combined effects of changes in dif-

fusivity, elastic modulus and grain size. In fact, no binary system seems

to uxist where both the diffusivity and the elastic constants are accur-

ately and completely known. Such an investigation is the purpose of the

present work. The Cu-Zn system seems the best choice because of the

availability of complete and precise diffusion data( 3 2 3 6 ), and the par-

(37)tial availability of elastic constants , in addition to some perhaps

useful electronic correlations. Alloys of interest include: 0, 10, 20,

30 atomic percent Zn (in the fcc orocphase); 50 atomic percent Zn ( in the

BCC or Ophase); and 65 percent Zn (in the complex cubic or asphase). Cons-

tant stress compression creep tests will be conducted in the range 550 to

7000 C, using 4 mm diameter specimens and stresses up to about 1000 psi.

This represents an homologous temperature range above 0.5 T for all them
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alloys. Grain size will be controlled to about 0.5 m. Additional elastic

constants will be determined by measuring the dynamic modulus at temperature

using resonance techniques in specimens of fixed geometries. Work in pro-

gress includes grain size control and the construction of a constant stress

compression creep apparatus fitted for inert atmosphere testing.

IV. INFLUENCE OF MODULUS ON THE TEERATURE DEPENDENCE OF HE
ACTIVATION ENERGY FOR CREEP AT HIGH TEMPERATURES (A. J. Ardell and

C. R. Barrett)

It has been established experimentally (1) and theoretically( 5 ' 27,

38) that high temperature creep of polycrystalline pure metals is a therm-

ally activated process and may be represented by the general expression:

a -A f(T, T) D (II)

where d is the steady state creep rate, A is a constant depending on the
5

internal structure of the material, f is some function of the applied stress,

eT, and test temperature, T, and D is the self-diffusion coefficient. If

we separate D into its temperature dependent and independent portions, then

it is possible to rewrite equation (11) as
-Qsd /RT

E - A, f(•, Qsd/(12)

where Qad is the activation energy for self-diffusion. Assuming a simple

Arrhenius type relationship between creep rate and temperature at a given

constant stress, the apparent activation energy for creep, Qc9 can be

given by the expression

- R d ln ( 1 3

'c d (I/T) 
(
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It is obvious that if f(O-, T) is not a function of temperature, then

Qc M Qsd°

Sherby(l) has shown that the steady state creep rate for pure metals

can be represented by

S - SL2 D (0-/E)" (14)

where S is a constant, L is the grain diameter, and E is the average (un-

relaxed) elastic modulus, and n is a constant equal to 5 over a wide range

of stress. The apparent activation energy for creep calculated from this

expression at constant grain size and stress is given by

- R d ln D + R d n E
c d (l/T) d (l/T)

or Qc M Qsd - 5R E- dT (15)

Thus, unless the modulus of elasticity does not vary with temperature Qc

will not be equal to Qsd" In general, E does vary with temperature, al-
T2 dE

though at moderately low temperatures the value associated with 5R TEd

is small(<2000 cal/mole). However, if there is a strong temperature de-

pendence of the elastic modulus, such as associated with the loss of ferro-

magnetism inoL-iron 4, then Qc will differ very markedly from Qad* It

should also be noted that equation (15) always predicts Qc> Qad as long as

the modulus decreases with increasing temperature.

The magnitude of the difference between Qc and Qsd is dependent on

the way in which the temperature dependent terms in f(cT, T) enter the creep

rate equation. Creep equations other than that given by equation (14) have

been developed which contain different functions of the temperature in the
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pre-exponential term. Three of the better known formulas are those

developed by Weertman and Nabarro, given as follows for constant L and a:

-3

Weertman (1955 dislocation climb model) (5) (const) DE (16a)
5T

(27) DE-3.5
Weertman (1957 dislocation climb model) Es M (const) -T (16b)

Nabarro (1957 diffusional creep model)(38) Cs M (const) . (16c)
8T

Apparent activation energies for creep can be obtained by applying equa-

tion (13) to these relationships.

Cadmium was chosen as an example to evaluate the inequality of

Qc to Q sd because the available evidence(1 6 ) indicated that the elastic

modulus of cadmium is a very strong function of temperature. Tests were

therefore conducted to determine the temperature dependence of the elastic

modulus of pure cadmium from room temperature up to the melting tempera-

ture. Parallel tests were also performed to determine the apparent acti-

vation energy for creep and to compare these data with the activation

energies predicted by equations (14), (16a), (16b) and (16c).

The average elastic modulus of polycrystalline cadmium (99.9 + %

pure) was determined in the temperature range from 273 to 588 K by meas-

uring the resonant frequency of rectangular specimens during transverse

free-free vibration. All tests were conducted in a helium atmosphere at

a pressure of about 1000 microns of Hg and the neutral frequency of vibra-

tion at room temperature was 790 cps. The modulus specimens had an aver-

age grain size of 1.5 - 2 mm, which was about the same size as the mini-

mum specimen dimension (the specimen dimensions in mm were 1.75 x 8.13

x 79.60). Complete details of the design of equipment and of the method
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(2)
of measuring the resonant frequency have been given previously

The curve of E/E 2 7 3 o K versus temperature for cadmium is shown in

Fig. 10. Included for comparison are the data of Koster(16) who deter-

mined the modulus in a similar manner at approximately the same fre-

quency range. The purity and grain size of Koster's material were not

reported. In the present investigation it was found that by driving the

specimen at its second harmonic the E/E27L curve is displaced to higher

temperatures, indicating that the steep drop in modulus with temperature,

which begins at about 400° K,is due to a relaxation effect. Both curves

were reproducible on heating and cooling. The magnitude of the relaxa-

tion is large and is most probably due to grain boundary relaxation.

With this in mind, the difference between Koster's curve and the one ob-

tained in this investigation may be due to a grain size difference.

In order to estimate the unrelaxed modulus at temperatures above

the relaxation the low temperature unrelaxed modulus was extrapolated

approximately parallel to the portion of the experimental curve where the

relaxation appears completed (see Fig. 10). The small curvature in this

extrapolation is reasonable in light of similar trends seen in other

metals (see Fig. 6, for example). From the extrapolated portion of the
T2 dE

curve the quantity E dT was calculated and applied to the creep formu-

las represented by equations (14) and (16a, b, c). The activation ener-

gies for creep predicted by these equations, appropriately corrected for

all their temperature dependent terms, are shown in Fig. 11.

In order to investigate the actual dependence of Qc with tempera-

ture, the creep behavior of pure polycrystalline cadmium (99.9999% pure)

was studied from 325 to 5500 K. Creep testing was done in compression
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using apparatus similar to that described previously(39) and temperatures

were maintained constant to 10 C using hydrocarbon oil baths up to 2000 C

and a salt mixture of 60% KNO 3 - 40% NaN0 2 above 2000 C. All creep speci-

mens were cylindrical in shape with a length of 3/8" and diameter of 1/4 -

3/8". An annealing treatment of 1 hour at 3100 C was given to all samples

prior to testing and the resulting grain'size was approximately 1-2 mu.

Apparent activation energies for creep were determined by the 6T

method( 3 9 ) and a typical creep rate versus creep strain curve used! for

the determination of Qc is shown in Fig. 12. Recrystallization often

occurred after only a few percent of creep because of the extremely high

purity of the material tested. For this reason the majority of tests were

concluded after only two or three temperature changes. Qc was not found

to vary with either stress or strain. The experimentally determined val-

ues of Qc are plotted in Fig. 11 as a function of temperature. All points

are plotted at the mean temperature between the two test temperatures.

It is obvious from the data plotted in Fig. 11 that the apparent

activation energy for creep of pure cadmium increases with test tempera-

ture. These results are consistent with those reported by Duran(40) where

Qc increased from a value of 20.0 kcal/mole at temperatures of 0.5 T toc m

a value of 30.0 kcal/mole at temperatures above 0.8 T . This increasem

can be best explained by the temperature dependence of the elastic modulus

and its influence on the calculation of Qc. The relationship presented by

equation (14) predicts the temperature dependence of Qc well within the

limits of experimental scatter (see Fig. 11), while the two creep equa-

tions derived by Weertman tend to underestimate the increase of Qc" The
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The diffusional creep model (which should apply only at very high tempera-

tures and low stresses) actually predicts a slight decrease in Qc with in-

creasing temperature.

Analysis of equation (14) yields a technique useful in the direct

calculation of t creep activation energies. If tests at different temp-

eratures are run at a constant TIE ratio rather than just at a constant

stress then the activation energy calculated from an Arrhenius type plot

will be equal to the self-diffusion activation energy. This effect is

illustrated in Fig. 13 where the steady state creep rate data of Servi

and Grant(41) for high purity aluminum is plotted both for the case of

constant o and constant C/E (the modulus of aluminum was taken from data

of Fine (42)). For constant a it is seen that Qc increases with increasing

test temperature and only approaches the value of Q d at test temperatures

near 0.5 T . The data plotted at constant O/E, however, yield a tempera-m

ture independent creep activation energy of 33 t 1 kcal/mole which is very

near to Qd (Q 3 4 kaIo (43))
nea t sd ~ad mole

The above analyses suggest a way of precisely correlating steady

state creep rate data at various temperatures. In the past, it has been

(44)common to plot such data by means of the Zener-Hollomon parameter

namely
Q

This parameter has been shown to closely predict the behavior of many pure

metals at elevated temperature, where the activation energy for creep is

usually taken as that for volume self-diffusion(4 5 . However, since QC

is not a constant but varies with temperature the Zener-Hollomon relation
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is not absolutely correct. Rather, the analyses presented in this investi-

gation indicate that equation (17) should be modified by compensating the

stress with a modulus term as follows

T . f(Qc/RT) 1a
i * (18a)

In this case Q will equal Qd* Since the diffusion coefficient D is
n c se cs

given by D sd equation (18a) can be rewritten as0

T f(•) (18b)

E

The importance of the temperature dependence of the elastic modulus in

the correlation of creep data by means of equation (18b) is seen in Fig.

(14) where Servi and Grant's data is plotted as i versus both E• and 0.
D E

Although both plots fit the data well, the excellent correlation of the

experimental points in the TIE plot at high test temperatures (where the

modulus correction is most important) once again illustrates the import-

ance of taking into account the temperature dependence of E.

It is worth noting that if T and l/E have the same exponent, n,

in a creep equation, as they do in equation (14), a plot of ln & vs. l/T

at constant T/E yields a true activation energy for creep regardless of

the value of this exponent. An alternative procedure consists of evaluat-

ing the quantity d(ln E'n)/d(l/T) which is equal to Qc by equation (14).

This procedure requires knowledge of the value of n which can only be ob-

tained by conducting a series of creep tests at different stresses. Even

though n is usually about 5 for pure metals, it generally is smaller for

alloys. Thus, if activation e",8ie6 are desired, especially in materials

where n is unknown, plotting ln. vs. 1/1 at constant T/E to find Qc has

obvious advantages.
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